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Abstract—Carsharing systems are adopting electric vehicles
into their fleets and may therefore be able to provide not only
transportation services to drivers/passengers but also energy
services to the power grid through appropriate participation
in electricity markets. This paper develops a queuing model
of such carsharing platforms where cars may be deployed
for transportation services at a given price, but also for grid
services during transportation-idle periods through energy price
arbitrage. The model provides a characterization of revenue
from each of these two streams. The paper further finds
optimal pricing and battery splitting to maximize revenue for
the carsharing platform, via an analysis of the reward structure
and an optimization algorithm. Platform revenue is assessed for
various system parameters under optimal operation.

Index Terms—Electric vehicles, queuing networks, sharing
economy, transportation, revenue maximization

I. INTRODUCTION

Automobiles have a certain flexibilty in that they can act
as both transportation resources and as distributed energy
resources. This dual-use flexibility of gasoline engines was
exploited in the early twentieth century by car owners at
the individual level, e.g. through Model T-powered washing
machines [1, Fig. 2]. The resurgence of modern plug-in
electric vehicles (EVs), however, enables leveraging this
flexibility at a large-scale systems level through coupled
control of transportation systems and energy grids [2],
especially in the context of the sharing economy [3].
Indeed on the energy side, EVs can not only serve as
both energy sources and sinks, but also provide voltage
and frequency regulation services to the smart grid [4]-
[7]. On the transportation side, business-to-peer carsharing
platforms' are starting to adopt electric vehicles within their
fleets [8]-[10]. This is especially the case for automobile
manufacturer-based platforms including Volkswagen’s WE,
Mercedes-Benz’s Car2Go, BMW’s ReachNow, GM’s Maven,
and Audi’s Audi-on-Demand.

Carsharing companies can garner additional revenues from
utilizing the battery packs of their vehicle fleet to provide
grid services. This paper develops a rigorous queuing-theoretic
model and computational tools to facilitate the analysis
and optimal coordination of EV-based carsharing service
platforms. Although queuing models have a long history
in modeling transportation services [l11]-[13], including
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! Business-to-peer carsharing platforms provide short-term (e.g., hourly) car
rentals, where the customer drives the car provided by the company. On the
other hand peer-to-peer ride sharing platforms, such as Lyft and Uber, rely
on privately-owned vehicles and their drivers to provide on-demand mobility
to customers.
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carsharing platforms [14], we believe this is the first
application to settings with EVs. The main goal in developing
our queuing-theoretic model for carsharing platforms is to (i)
capture the salient features of EV charging processes, and
(ii) capture the tradeoffs in providing both transportation and
grid services. Indeed, the inherent time required to charge EV
batteries will impact a transportation service provider’s ability
to deliver rides in a timely manner. Further, the underlying
cost and time requirements of battery charging will affect the
pricing decisions for mobility services.

In particular, we first establish a simple queuing model
of EV transportation service provision and recharge, further
determining the revenue garnered. Next we consider the
possibility of using an EV battery to perform price arbitrage in
an energy market; this is done in the presence of a stochastic
real-time wholesale market price signal through a dynamic
programming argument. Finally, we consider the possibility
of (dynamically) splitting the battery into a transportation
segment and a grid services segment to enable energy price
arbitrage when idle from delivering transportation services. For
certain standard distributional assumptions, we characterize
the candidate optimal transportation prices p upon fixing
the battery capacity B dedicated to provide transportation
services. An efficient algorithm for joint optimization of (p, B)
is given, and numerical examples are used to provide insight
into the basic tradeoff.

For ease of presentation and to capture the basic queuing-
theoretic insights, we focus on energy services restricted to
price arbitrage against real-time prices in the energy market.
We further focus on the setting where the fleet consists of a
single car. Longer presentations of this work will include the
setting with a variety of grid services and larger fleets of cars.

II. MODELING TRANSPORTATION SERVICES

Let customers open A’s application following a Poisson
process with intensity A\g. When a customer arrives, she
observes the posted price p (in money/time) for utilizing
A’s vehicle and the maximum driving time 7% = B/3~,
assuming that the vehicle battery of capacity B depletes
at a constant rate S~ when driven. She decides to rent a
vehicle, if (i) the posted price p is lower than her reservation
price, and (ii) her required driving time 7 does not exceed
the maximum driving time 77%*. We model a customer’s
reservation price and driving time as independent random
variables. Let . denote the complementary cumulative or tail
distribution function of the reservation wages, and F’- denote
the cumulative distribution function of the trip times. It follows
that customers who are willing to pay the posted price and



abide by the driving time restrictions arrive according to a
Poisson process with intensity

A= AOF‘IT(p)FT(B/ﬁ_)' (1)

Driving times of customers who ultimately avail A’s service
follow the same distribution as the driving times of all
customers truncated at B/3~. The vehicle battery loses 577
amount of energy when driven for 7, where recall that 5~
denotes the battery discharge rate. Denote the battery charging
rate at the depot by 37. Then, the car will require 7¢ := 2—17
amount of time to charge it back up to its capacity B.
Therefore, we model the charging time proportional to the
driving time as Figure 1(a) illustrates. The car (server) is
deemed busy when it is either being driven or charging after
being driven. For each ride provided, the car remains busy for
T+7c =7(1+ 87 /B") := 73 amount of time, implying that
the service time follows a truncated version of the trip time
distribution with mean

L= BBl | T < B/B7). @
!

Thus, A’s service has been modeled as an M/G/1 queue,
written in Kendall’s notation, with arrival rate \ and service
rate p. In our current formulation, we allow each arriving
customer to wait in the depot if the vehicle has been checked
out by another customer. A more realistic model with reneging
or balking, and other behavioral models of customers as in [15]
are left to future endeavors.

Too low a price or too large a battery capacity can result
in unstable growth in the passenger queue. Enforcing A < p
ensures that the queue remains stable, i.e.,

L B/B~
2T (p) /0 £, ()dt < 1, 3)

=2, (B/6")

where f. is the probability density function of driving times.

A. Computing A’s revenue rate from transport services

Drawing results from the equilibrium analysis of M/G/1
queues, we aim to calculate the rate at which A accrues
revenue, assuming the car service is in steady-state. From
renewal-reward theory, this rate is given by the ratio of
the expected revenue A makes from a busy period and the
expected total cycle length (busy + idle period). We calculate
the expected revenue during a busy period as follows. For
each customer, A is paid pr for the transportation service,
and it pays pret3TTc = preeS T for energy. Here, pre: (in
money/energy) denotes the flat retail rate for energy that the
distribution utility (or a retail aggregator) charges A. Overall,
A makes (p — pretS~)7 from a customer who drives it for
7 time. Thus, the expected revenue from the customers in a
busy period from transportation service provision is given by

Nt
Z(p - pretﬂ)Ti‘| >

i=1

IIr =E

where 71, ..., 7n, are the driving times of the N7 customers
in the busy period who seek to use the car service. By Wald’s
lemma, the above relation simplifies to

7y = (p — pretB7)E[N7] - E[7 |7 < B/B7]
A N
:(p_pretﬁ )mE[T ‘TSB/ﬁ ]

The last line in the above equation uses the fact that the
expected length of the busy period for an M/G/1 queue is
given by (u—M\)~1. Also, the expected length of the idle period
is A1, yielding the following expression for the reward rate
Rr of A from transportation service provision.
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Utilizing (1) and (2), we get
Ry = \3B(p — preatB7)F2 (p)@2(B/B7). &)

Notice that we do not explicitly model A’s maintenance
and repair costs for its vehicles. One can expect repair costs
to be proportional to the driving times, as more time a car is
driven, the more prone it becomes to traffic accidents. Such
costs can be included in the retail electricity price. Regular
maintenance costs will add a constant to the revenue rate that
will not affect our conclusions from the model.

Rr =

IIT. PRICE ARBITRAGE USING VEHICLE BATTERY DURING
IDLE PERIODS

We aim to find how a vehicle can split its battery capacity
for dual use—a portion set aside to provide transportation
services and utilize the rest to maximize its revenue from
arbitraging against time-varying energy prices. To simplify
the exposition, conceptually consider a vehicle battery with
capacity By as a combination of a transportation battery of
capacity B and a trading battery of capacity B’ = By, — B.

Conceptually splitting the vehicle battery into two parts
ensures that a transportation customer always enjoys a
nonrandom battery capacity for her trip. Allowing the vehicle
battery to provide grid services with the total battery capacity
makes the available battery for transportation a random
quantity, compromising A’s carsharing business. Any residual
energy in the grid battery can be utilized by a transportation
customer in an emergency. Further, the battery split need not
be constant, but can be varied over time. For example, on days
with high customer traffic, A might allocate a higher portion
of the battery for transportation as opposed to that in a day
with low traffic.

Recall that the car is busy with transportation service when
it is being driven by a customer, or is preparing for it by
charging its transportation battery. It is idle, otherwise. During
this idle period, let A receive nonnegative’ energy prices p (in
money/capacity) at regular intervals of length A as shown in

2The nonnegativity assumption on the prices can be relaxed with minor
modifications to the results.
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Fig. 1: (a) The relation between driving times, charging times, and busy times. (b) The price process during the idle period.

Figure 1(b). These prices may be the locational marginal prices
from a real-time wholesale market,®> or from an emergent
retail market. Notice that p is different from the flat retail
energy price prt that A pays to charge its transportation
battery. A participates as a regular consumer of a distribution
utility that offers it a flat retail rate to charge its transportation
battery. And during an idle period, A participates as an owner-
operator of a distributed energy resource (the vehicle battery)
or one who relinquishes control over its trading battery to an
aggregator of such resources.

A vehicle is connected to the grid when it charges its
transportation battery. We insist in our model that it does not
arbitrage energy to accrue revenue during that period. That
is, we separate the times when the car provides or prepares
for transportation services, and when it takes part in price
arbitrage. This separation facilitates easy auditing.

A. Optimal control for price arbitrage

We now formulate the question of expected revenue
maximization from price arbitrage with a battery of capacity
B’ over an idle period as a discrete-time stochastic control
problem. Suppose there are 7" intervals of length A within an
idle period, where recall that A is the time interval between
consecutive price changes. Let p := (po,...,pr—1) denote
the stochastic price process against which A maximizes its
expected revenue from arbitrage. Starting from a state of
charge zp € [0,B’], the trading battery state at interval ¢
progresses as

Zt41 = 2+ Ut

fort =0,...,T—1. Here, u, stands for the energy transacted
at time ¢. A positive u indicates charging the trading battery,
and a negative one indicates discharging.

We seek a control policy v := {vo,...,vr—1}, where
~¢ maps the available information at time ¢ to the storage
control action u; . The relevant information for control design
comprises the state at that time and the history of prices till
that time. A policy is deemed admissible, denoted y € M(B’),
if the induced control actions respect the capacity constraints

3While A needs a sufficiently large aggregate battery capacity to participate
in a wholesale market, our analysis on the utilization of one car battery reveals
the dependency of the revenue rate on said battery capacity and informs future
work with multiple vehicles.

of the trading battery, i.e.,
t
0< 20+ Z ul < B’
k=0

almost surely for ¢ = 0,...,7 — 1. The optimal expected
revenue over an idle period of length 7" is then given by

T-1
Z Pk(*“l) ’
k=0

where E stands for the expectation computed with respect to
the distribution on the prices. In our next result, we provide
a closed-form expression for the optimal revenue J*(zg). The
proof in the Appendix relies on a dynamic programming
based argument, adopted from [16]. We use the notation
2t = max{z,0} in stating the result.

J*(Zo) =

max [E
YEM(B’)

(&)

Proposition 1. The maximum expected revenue from price
arbitrage with a trading battery of capacity B’ is given by

T2
J*(20) = 20E[po] + B’ Z E [(Pj+1\j - Pj)ﬂ (6
=0

where p, 1 = E[pi11]p<s] is the one-step look-ahead price
forecast, given the history of prices till time t.

The derivation of the above result proves that the optimal
storage control policy has a threshold structure. It prescribes
to charge the trading battery completely when the price is
expected to go up in the next time step, and to fully discharge
it, otherwise.

Our model of storage operation for price arbitrage neglects
three important considerations. First, we do not model
roundtrip efficiency losses. The results can be extended to
consider such losses, but are not modeled to maintain clarity
of exposition. Second, we do not model the effect of battery
degradation from storage cycling. Vehicle batteries have
limited cycle life and replacement costs can be significant,
e.g., see [17]. We aim to address this modeling limitation in
future work. Finally, we do not consider ramping limitations
on the battery’s charging and discharging abilities. One way
to account for ramping limitations is to constrain the split of
the battery in a way that the trading battery size is chargeable
within A time.



B. Computing A’s revenue rate from price arbitrage

With the aid of Proposition 1, we now derive the revenue
rate from energy trading that A garners. To simplify the
calculation, assume that the price process p is stationarz
Markov*. Then, the distribution of p; := (Pt+1|t *Pt)
becomes independent of ¢. Denoting its expectation by (p),
the expected revenue during an idle period becomes

/ B
s ~ B'-E[T - 2)(3) ~ 11 (7),

where A denotes the length of the pricing interval. We make
two approximations in deriving Ilg. First, we ignore the
contribution of the initial state of charge at the start of an
idle period to the revenue from arbitrage. Second, the number
of pricing intervals T'— 2 has been approximated by 7" whose
expectation is given by (AA)~!. If the number of pricing
intervals are sufficiently high within an idle period, these
approximations are accurate.

The expected revenue in the above relation yields the
following revenue rate from energy trading using renewal-
reward theory.

1 1\ !
Ro=(25+3) M

- %B’(ﬁ) [1 — MNBF(p)®,(B/B7)| .

When splitting the vehicle battery for transportation and price
arbitrage, a larger trading battery size increases the arbitrage
revenue in each idle period. Also, it leaves lesser capacity for
transportation, leading to a decrease in the incoming traffic of
customers seeking transport, thereby increasing the idle time.
The transportation price also has a similar effect on the revenue
rate from energy trading in that it impacts the rate of arriving
customers that in turn affects the lengths of the idle periods.

4The published version is missing the Markov assumption.

Ry + Rg

Fig. 2: Variation of aggregate revenue rate with transportation price
and battery allocated for transportation. For this experiment, we chose
Ao =1, Bu =8 B~ =1, B =T, pree = 15, and 2 = -
Trip times and reservation wages were assumed to be exponentially
distributed with means 1, and 2, respectively. The dashed line plots

p*(B) in (7) for each B € [B", Bl

IV. SPLITTING BATTERY CAPACITY FOR DUAL USE

Having computed the revenue rate from transportation and
energy trading for price arbitrage, we now derive how A can
split its battery capacity to maximize its aggregate revenue rate
Ryt := Rr+Rg. Recall that we concluded Section III with the
observation that the transportation price p affects not only the
revenue from transportation, but also the revenue from price
arbitrage. Hence, A seeks to jointly optimize its transportation
price and the battery split for the two services.

maximize ASB(p — preeBT)F2(p)D2(B/B™)

+ 2 (B~ B) [1 - MBFL ()2, (B/57)]

subject o A\ofSF,(p)®,(B/f7) < 1,
p=>0, 0< B < By

The stability constraint defines an open set. To avoid technical
difficulties in optimizing over such an open set, we take its
closure with the understanding that the parameters are suitably
perturbed to make the closed set feasible.

Optimizing the aggregate revenue rate Ry can be
challenging, owing to its nonlinear non-concave variation in
the parameters p and B as Figure 2 illustrates. In what follows,
we make additional assumptions on the trip times and identify
structural properties of Ry that facilitate the development of
an algorithm towards solving the above optimization problem.

A. The case with exponentially distributed reservation prices

We characterize the candidate optimal transportation prices
upon fixing the battery capacity B dedicated to provide
transportation services.

Proposition 2. Suppose the reservation prices for
transportation  customers are exponentially distributed
with mean (r). For a given B € (0, By, the maximum of
Ry, occurs at p* = +o0 or at

PQ

p*(B) = max {po — <7T>W <_ple7r>) ) pstable} ;o (D

if 1+ po/{m) + log(p1/{m)) > 0, where W is the principal
branch of the Lambert-W function, and

a1 _ (B —B)(p)
D0 = Dretf3 +§<7T>» b1 = ma

Puasie = F 7 (Dofo-(B/57)] 7).

Proposition 2 is crucial to our design of an algorithm to
compute the optimal battery split B* and the optimal price p*.
Several remarks on the result are in order before presenting
its proof and the algorithm design. The ensuing discussion
ignores the stability constraints for the ease of exposition.

First, the Lambert-W function is a solution to the implicit
equation W(ze”) = z. For x € [—1/e,0), there are two
solutions to that equation, both of which are negative. The
principal branch selects the one with the smallest absolute
value; see [18] for details. As a result, the candidate optimizer
p*(B) in (7) is no less than py.



Second, notice that as B sweeps from the total battery
capacity to zero, p; increases from zero to co. Said differently,
A charges its passengers more as the size of the trading
battery B,,; — B increases, to both compensate from reduced
passenger car-requests and to garner higher energy-trading
revenue from increased idle times. Further, beyond a certain
size of the trading battery, p; becomes large enough to make
the argument inside the Lambert-W function less than —1/e.
Then p*(B) in (7) no longer defines a candidate optimizer.
In other words, when the trading battery is large enough,
marginally increasing the trading battery will marginally
increase the price-arbitrage profit, but this increase is unable to
cover A’s subsequent marginal loss in transportation revenue,
and p* = oo becomes the only candidate optimizer for such B
values. Therefore, p*(B) in (7) is a candidate optimizer only
for B € [BY, By, where B' is implicitly defined by
%qume—(“m“ﬂ)¢T(BL/5—) = Beo.  (8)

Third, p* = oo corresponds to the case that no customer
avails A’s transportation service, effectively reducing its
vehicle to a static battery. It readily follows that A will
simultaneously reduce B to zero, thus maximizing its revenue
from energy trading.

Fourth, setting B = DBy, amounts to fully utilizing
the vehicle battery for transportation. In that case, the
only candidate optimal transportation price becomes p, that
depends both on the retail energy price and the mean
reservation price. Higher the energy retail price to charge its
vehicles, the more A charges customers to compensate. Higher
the customers’ mean reservation price, the more A charges
them to exploit it.

B-+

Proof of Proposition 2. We ignore the queue stability
constraint in the rest of the proof. The derivative of Ry, with
respect to p is given by

= NoBO,(B/B7)Fa(p)fx(p) (p1e7T +po —p) |

where recall that f, is the probability density function of the
reservation prices. Therefore, the derivative is positive at zero
and for large p. The candidate maximizers of the aggregate
revenue are infinity and the roots of the derivative. These roots
are the solutions of ple% +po —p = 0, which can be written
as

1

L (po— P1 ko
7(p0_p)e<ﬂ)(po p) _ _ Pl .
(m)

(m)

Applying W on both sides, we infer that the above relation has
at most two solutions. A candidate maximizer of Ry is the
smallest root, given by (7). Further, W is only well-defined
over negative arguments in [—1/e,0), leveraging which, the
inequality identifying a potential optimizer in (7) follows. W

B. Algorithm to optimize transportation price and battery split

Proposition 2 allows us to design the following algorithm
to optimize the transportation price and the battery split for
dual use. For convenience, we use the notation Ry (p, B) to

make explicit the dependency of the aggregate revenue rate on
p and B.
o Compute B" in (8) using a bisection search over [0, By
o Maximize Ry (p*(B), B) over [BY, By using projected
gradient descent with diminishing step sizes, starting from
(B + Bit)/2. Call the optimizers p*!, B*1.
o If Rii(00,0) > R(p™t, B*!), then return p* =
00, B* = 0. Otherwise, return p*!, B*1,
We cannot guarantee that the gradient method converges to
the true optimizer in general. It does so for the numerical
experiments described next.

C. Variation of optimal solution with problem parameters

Figure 3 illustrates the variation of the optimal revenue rate
R{, and the transportation battery capacity B* at optimality
with various problem parameters. As one expects, A invests
all its battery for grid services for low customer traffic
(low Ag). The part dedicated to transportation increases with
the customer traffic upto a point, after which transportation
becomes more attractive than grid services. Similarly, the
longer the expected trip times (7) the higher the revenue
the platform accrues from transportation. Therefore, when
trip times become high enough the battery is allocated fully
to carsharing services. Next, recall that (p)/A equals the
expected gain from energy arbitrage with unit battery capacity,
and its effect on B* is exactly opposite to that of )
and (7). As (p)/A increases, grid services become more
rewarding, and thus our algorithm favors a battery split against
transportation services, reducing it to zero when the grid
profits become high enough.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This paper defines a framework to analyze carsharing
services that can utilize the vehicle battery for grid services
when idle. The framework conceptually splits the battery
capacity into two parts—one solely for transportation services
and the other for grid services. To keep the analysis concrete,
the focus is on using the battery for price arbitrage against real-
time prices during A’s idle periods. Leveraging equilibrium
analysis of queues, we characterize the revenue rate of
such a platform as a function of the price it charges its
transport customers and the battery split. We further provide
an algorithm to compute the optimal prices and battery split
for exponentially distributed trip times, and use it to study
the dependency of the optimal revenue rate and the resulting
battery split on various system parameters.

We aim to extend our analysis to the case where the
carsharing company A commands a fleet with more than
one vehicle. This work has ignored the possibility that
A maintains more than one charging depot across a city
resulting in a queuing network—an interesting consideration
for future work. Spatio-temporal variations in demand often
lead carsharing systems to have excess cars in one location,
and a paucity in another. We aim to extend our analysis,
accounting for rebalancing costs among depots through
appropriate incentive mechanisms, e.g., in [19]. This work
only considers vehicle batteries to garner revenues from price
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Fig. 3: Variation of the optimal revenue rate and battery split with (p)/A, () and Ag. Other parameters are the same as used for Figure 2.

arbitrage; we will consider alternate grid services that the
‘grid’ battery might provide. Finally, we wish to utilize our
framework and data from carsharing services to analyze how
profitable such dual service provision will be in practice.

APPENDIX

Consider the optimal value functions

Jr_i(2z, p<r—1) '=maximum — pr_qu,
“ ©))
subjectto 0 < z+u < B,
Jt* (Zv pSt)
= maxiumum —pu+E [T (2 +u, p<itr) | p<i] s
subjectto 0<z+u< B
(10)

fort =0,...,T—2. By [20, Proposition 1.3.1], the parametric
optimizers of the above optimization problems identify the
optimal policy, and the required optimal cost is given by

J*(20) = E[J5 (20, po)] -

Since pr_1 > 0, the optimizer of (9) is given by u* = —z
that yields

—z. (11)

Jr_1(2,p<r-1) = pr-12, Yr_1(2, p<T-1)

Next, we utilize (10) and backward induction to prove

T—2
X +
Ji (2, p<t) = prz + B’ E E [(pj+1\j —pi) | Pgt] )
j=t

B’ — Zt,

—Zt,

(12)
. if py < ,
V(2 p<t) = Pt 'Pt-&-l\t

otherwise
for each z € [0, B’], price sequence p and ¢t = 0,...,T — 2.
The rest follows from (12) with ¢ = 0. Details are omitted for
space constraints.

REFERENCES

[11 R. Kline and T. Pinch, “Users as agents of technological change:
The social construction of the automobile in the rural United States,”
Technology and Culture, vol. 37, no. 4, pp. 763-795, Oct. 1996.

M. Alizadeh, H.-T. Wai, M. Chowdhury, A. Goldsmith, A. Scaglione,
and T. Javidi, “Optimal pricing to manage electric vehicles in coupled
power and transportation networks,” IEEE Trans. Control Netw. Syst.,
vol. 4, no. 4, pp. 863-875, Dec. 2017.

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]
[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

A. Sundararajan, The Sharing Economy. Cambridge, MA: MIT Press,
2016.

R. Sioshansi and P. Denholm, “The value of plug-in hybrid electric
vehicles as grid resources,” Energy J., vol. 31, no. 3, pp. 1-23, 2010.
S. Han, S. Han, and K. Sezaki, “Development of an optimal vehicle-
to-grid aggregator for frequency regulation,” IEEE Trans. Smart Grid,
vol. 1, no. 1, pp. 65-72, Jun. 2010.

E. Sortomme and M. A. El-Sharkawi, “Optimal scheduling of vehicle-
to-grid energy and ancillary services,” IEEE Trans. Smart Grid, vol. 3,
no. 1, pp. 351-359, Mar. 2012.

J. Hu, H. Morais, T. Sousa, and M. Linda, “Electric vehicle fleet
management in smart grids: A review of services, optimization and
control aspects,” Renew. Sustain. Energy Rev., vol. 56, pp. 1207-1226,
Apr. 2016.

G. Brandstitter, M. Kahr, and M. Leitner, “Determining optimal
locations for charging stations of electric car-sharing systems under
stochastic demand,” Transport. Res. B: Method., vol. 104, pp. 17 — 35,
Oct. 2017.

S. Illgen and M. Hock, “Electric vehicles in car sharing networks —
challenges and simulation model analysis,” Transport. Res. D: Transport
and Environ., vol. 63, pp. 377-387, Aug. 2018.

R. F. F. Lemme, E. F. Arruda, and L. Bahiense, “Optimization model to
assess electric vehicles as an alternative for fleet composition in station-
based car sharing systems,” Transport. Res. D: Transport and Environ.,
vol. 67, pp. 173-196, Feb. 2019.

D. R. Leonard, J. B. Tough, and P. C. Baguley, “CONTRAM: A
traffic assignment model for predicting flows and queues during
peak periods,” Transport and Road Research Laboratory (TRRL),
Wokingham, Berkshire, United Kingdom, TRRL Laboratory Report 841,
Sep. 1978.

R. C. Larson and A. R. Odoni, Urban Operations Research. Englewood
Cliffs, NJ: Prentice-Hall, 1981.

E. Cascetta, Transportation Systems Engineering: Theory and Methods.
Springer, 2013.

D. K. George and C. H. Xia, “Fleet-sizing and service availability for a
vehicle rental system via closed queueing networks,” Eur. J. Oper. Res.,
vol. 211, no. 1, pp. 198-207, May 2011.

S. de Luca and R. D. Pace, “Modelling the propensity in adhering to
a carsharing system: A behavioral approach,” Transportation Research
Procedia, vol. 3, pp. 866 — 875, 2014, 17th Meeting of the EURO
Working Group on Transportation, EWGT2014, 2-4 July 2014, Sevilla,
Spain.

S. Bose and E. Bitar, “The Marginal Value of Networked Energy
Storage,” arXiv e-prints, p. arXiv:1612.01646, Dec. 2016.

S. Kara, W. Li, and N. Sadjiva, “Life cycle cost analysis of electrical
vehicles in australia,” Procedia CIRP, vol. 61, pp. 767 — 772, 2017, the
24th CIRP Conference on Life Cycle Engineering.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and
D. E. Knuth, “On the lambertw function,” Advances in Computational
Mathematics, vol. 5, no. 1, pp. 329-359, Dec 1996.

S. L. Smith, M. Pavone, M. Schwager, E. Frazzoli, and D. Rus,
“Rebalancing the rebalancers: optimally routing vehicles and drivers in
mobility-on-demand systems,” in 2013 American Control Conference,
June 2013, pp. 2362-2367.

D. P. Bertsekas, Dynamic programming and optimal control.
Scientific Belmont, MA, 1995, vol. 1, no. 2.

Athena



	Introduction
	Modeling transportation services
	Computing A's revenue rate from transport services

	Price arbitrage using vehicle battery during idle periods
	Optimal control for price arbitrage
	Computing A's revenue rate from price arbitrage

	Splitting battery capacity for dual use
	The case with exponentially distributed reservation prices
	Algorithm to optimize transportation price and battery split
	Variation of optimal solution with problem parameters

	Conclusions and Future Research Directions
	Appendix
	References

